Efficient integration techniques for the long time simulation of the disordered discrete nonlinear Schrödinger equation

Haris Skokos

Department of Mathematics and Applied Mathematics, University of Cape Town Cape Town, South Africa

> E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Outline

- Symplectic Integrators Tangent Map Method
- Disordered lattices and their dynamical behavior
- Different 2-part and 3-part spilt symplectic integrators for the disordered discrete nonlinear Schrödinger equation (DNLS)
- Summary

Autonomous Hamiltonian systems

Let us consider an N degree of freedom autonomous Hamiltonian systems of the $H(\vec{q}, \vec{p}) = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + V(\vec{q})$ form:

As an example, we consider the Hénon-Heiles system:

$$H_2 = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$$

Hamilton equations of motion:

Variational equations:

$$\begin{cases} \dot{x} = p_x \\ \dot{y} = p_y \\ \dot{p}_x = -x - 2xy \\ \dot{p}_y = y^2 - x^2 - y \end{cases}$$
$$\begin{cases} \dot{\delta x} = \delta p_x \\ \dot{\delta y} = \delta p_y \\ \dot{\delta p}_x = -(1+2y)\delta x - 2x\delta y \\ \dot{\delta p}_y = -2x\delta x + (-1+2y)\delta y \end{cases}$$

Symplectic Integrators (SIs)

Formally the solution of the Hamilton equations of motion can be written as: $\frac{d\vec{X}}{dt} = \left\{H, \vec{X}\right\} = L_H \vec{X} \Longrightarrow \vec{X}(t) = \sum_{n \ge 0} \frac{t^n}{n!} L_H^n \vec{X} = e^{tL_H} \vec{X}$

where \vec{X} is the full coordinate vector and L_H the Poisson operator:

$$L_{H}f = \sum_{j=1}^{N} \left\{ \frac{\partial H}{\partial p_{j}} \frac{\partial f}{\partial q_{j}} - \frac{\partial H}{\partial q_{j}} \frac{\partial f}{\partial p_{j}} \right\}$$

If the Hamiltonian H can be split into two integrable parts as H=A+B, a symplectic scheme for integrating the equations of motion from time t to time t+ τ consists of approximating the operator $e^{\tau L_H}$ by

$$\mathbf{e}^{\tau \mathbf{L}_{\mathrm{H}}} = \mathbf{e}^{\tau (\mathbf{L}_{\mathrm{A}} + \mathbf{L}_{\mathrm{B}})} = \prod_{i=1}^{\mathsf{J}} \mathbf{e}^{\mathbf{c}_{i} \tau \mathbf{L}_{\mathrm{A}}} \mathbf{e}^{\mathbf{d}_{i} \tau \mathbf{L}_{\mathrm{B}}} + O(\boldsymbol{\tau}^{\mathsf{n+1}})$$

for appropriate values of constants c_i , d_i . This is an integrator of order n. So the dynamics over an integration time step τ is described by a series of successive acts of Hamiltonians A and B.

Symplectic Integrator SABA₂C

The operator $e^{\tau L_H}$ can be approximated by the symplectic integrator [Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]:

$$SABA_{2} = e^{c_{1}\tau L_{A}} e^{d_{1}\tau L_{B}} e^{c_{2}\tau L_{A}} e^{d_{1}\tau L_{B}} e^{c_{2}\tau L_{A}} e^{d_{1}\tau L_{B}} e^{c_{1}\tau L_{A}}$$

with $c_{1} = \frac{1}{2} - \frac{\sqrt{3}}{6}, c_{2} = \frac{\sqrt{3}}{3}, d_{1} = \frac{1}{2}$.

The integrator has only small positive steps and its error is of order 2.

In the case where *A* is quadratic in the momenta and *B* depends only on the positions the method can be improved by introducing a corrector *C*, having a small negative step:

$$C = e^{-\tau^{3} \frac{c}{2} L_{\{\{A,B\},B\}}}$$

with $c = \frac{2 - \sqrt{3}}{24}$. Thus the full integrator scheme becomes: $SABAC_2 = C (SABA_2) C$ and its error is of order 4.

Tangent Map (TM) Method

Any symplectic integration scheme used for solving the Hamilton equations of motion, which involves the act of Hamiltonians A and B, can be extended in order to integrate simultaneously the variational equations [Ch.S. & Gerlach, PRE (2010) – Gerlach & Ch.S., Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].

The Hénon-Heiles system can be split as: $A = \frac{1}{2}(p_x^2 + p_y^2)$ $B = \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{2}y^3$

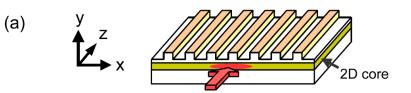
$$\begin{split} x &= p_{x} \\ \dot{y} &= p_{y} \\ \dot{y} &= p_{y} \\ \dot{p}_{x} &= -x - 2xy \\ \dot{p}_{y} &= y^{2} - x^{2} - y \end{split} \xrightarrow{A(\vec{p})} \xrightarrow{\dot{x}} A(\vec{p}) \\ \dot{p}_{y} &= 0 \\ \dot{p}_{y} &= 0 \\ \dot{p}_{y} &= 0 \\ \dot{p}_{y} &= 0 \\ \dot{\delta}x &= \delta p_{x} \\ \dot{\delta}y &= \delta p_{y} \\ \dot{\delta}y &= \delta p_{y} \\ \dot{\delta}y &= \delta p_{y} \\ \dot{\delta}y &= -(1 + 2y)\delta x - 2x\delta y \\ \dot{\delta}p_{y} &= -2x\delta x + (-1 + 2y)\delta y \end{aligned} \right\} \Rightarrow \frac{d\vec{u}}{dt} = L_{BV}\vec{u} \Rightarrow e^{\tau L_{BV}} : \begin{cases} x' &= x + p_{x}\tau \\ y' &= y + p_{y}\tau \\ px' &= p_{x} \\ py' &= p_{x} \\ \phi x' &= \delta x + \delta p_{x}\tau \\ \delta y' &= \delta p_{x} \\ \delta p_{y} &= \delta p_{y} \\ \delta p_{x} &= -(1 + 2y)\delta x - 2x\delta y \\ \delta p_{y} &= y^{2} - x^{2} - y \\ \delta x &= 0 \\ \delta y &= 0 \\ \delta y$$

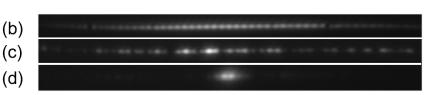
Interplay of disorder and nonlinearity

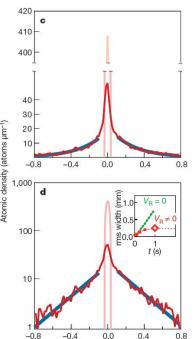
Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]

Waves in nonlinear disordered media – localization or delocalization?

Theoretical and/or numerical studies [Shepelyansky, PRL (1993) – Molina, Phys. Rev. B (1998) – Pikovsky & Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] Experiments: propagation of light in disordered 1d waveguide lattices [Lahini et al., PRL (2008)]







z (mm)

<u>The Klein – Gordon (KG) model</u>

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000.

Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left|\frac{1}{2}, \frac{3}{2}\right|$.

Linear case (neglecting the term $u_l^4/4$)

Ansatz: $u_l = A_l \exp(i\omega t)$. Normal modes (NMs) $A_{v,l}$ - Eigenvalue problem: $\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$ with $\lambda = W\omega^2 - W - 2$, $\varepsilon_l = W(\widetilde{\varepsilon}_l - 1)$

The discrete nonlinear Schrödinger (DNLS) equation

We also consider the system:

$$\boldsymbol{H}_{D} = \sum_{l=1}^{N} \boldsymbol{\varepsilon}_{l} \left| \boldsymbol{\psi}_{l} \right|^{2} + \frac{\boldsymbol{\beta}}{2} \left| \boldsymbol{\psi}_{l} \right|^{4} - \left(\boldsymbol{\psi}_{l+1} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+1}^{*} \boldsymbol{\psi}_{l} \right)$$

where ε_l chosen uniformly from $\left[-\frac{W}{2}, \frac{W}{2}\right]$ and β is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$ of the wave packet.

Distribution characterization

We consider normalized energy distributions in normal mode (NM) space

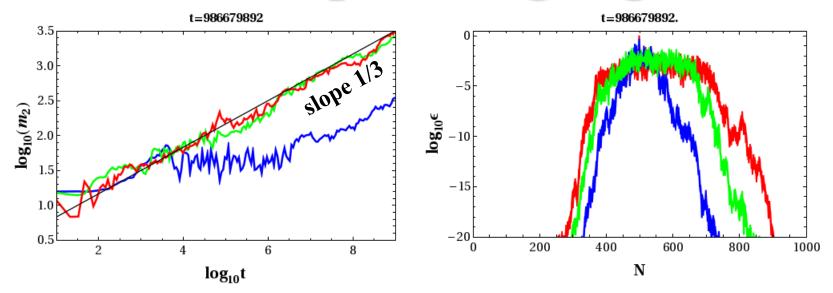
$$z_v \equiv \frac{E_v}{\sum_m E_m}$$
 with $E_v = \frac{1}{2} \left(\dot{A}_v^2 + \omega_v^2 A_v^2 \right)$, where A_v is the amplitude

of the vth NM.

Second moment:

$$m_2 = \sum_{\nu=1}^{N} (\nu - \overline{\nu})^2 z_{\nu}$$
 with $\overline{\nu} = \sum_{\nu=1}^{N} \nu z_{\nu}$

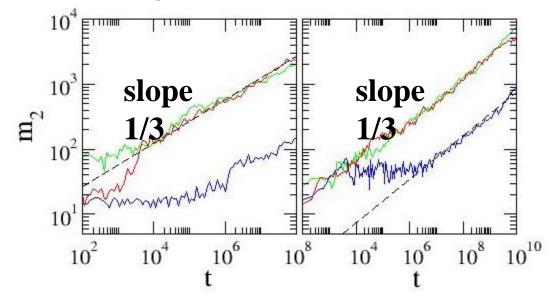
Different spreading regimes



Different spreading regimes

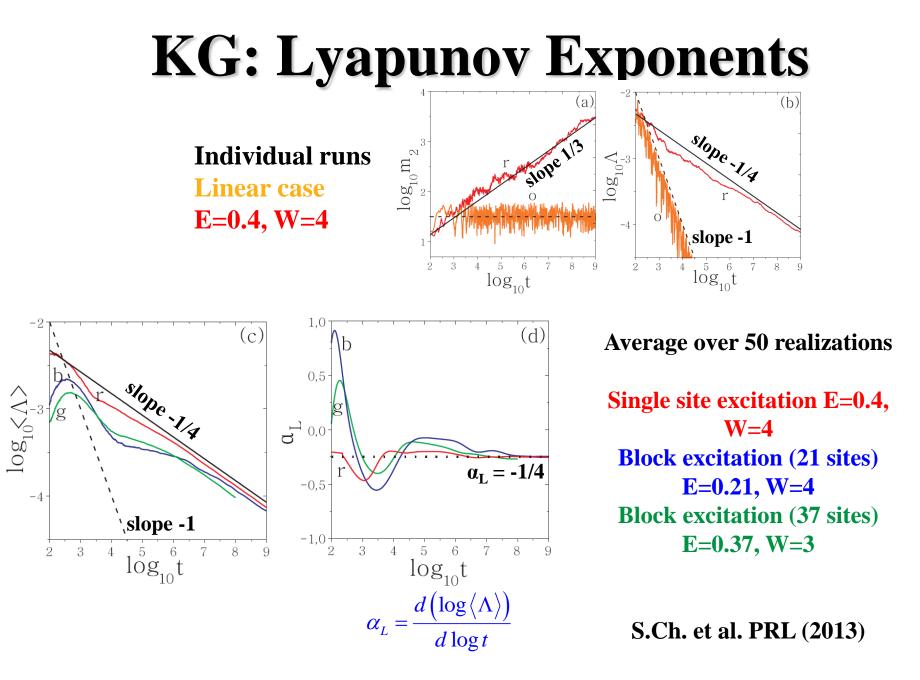
Single site excitations $\alpha = 1/3$

DNLS W=4, β = 0.1, 1, 4.5 KG W = 4, E = 0.05, 0.4, 1.5



Characteristics of wave packet spreading: $m_2 \sim t^{\alpha}$ with $\alpha = 1/3$ or $\alpha = 1/2$, for particular chaotic regimes.

Flach, Krimer, Ch.S., PRL (2009) Ch.S., Krimer, Komineas, Flach, PRE (2009) Ch.S., Flach, PRE (2010) Laptyeva, Bodyfelt, Krimer, Ch.S., Flach , EPL (2010) Bodyfelt, Laptyeva, Ch.S., Krimer, Flach S., PRE (2011)



The KG model

We apply the SABAC₂ integrator scheme to the KG Hamiltonian by using the splitting:

with a corrector term which corresponds to the Hamiltonian function:

$$\mathbf{C} = \left\{ \left\{ A, B \right\}, B \right\} = \sum_{l=1}^{N} \left[u_{l} (\tilde{\varepsilon}_{l} + u_{l}^{2}) - \frac{1}{W} (u_{l-1} + u_{l+1} - 2u_{l}) \right]^{2}$$

The DNLS model

How can we use Symplectic Integrators for the DNLS model?

$$\begin{split} \boldsymbol{H}_{D} &= \sum_{l} \boldsymbol{\varepsilon}_{l} \left| \boldsymbol{\psi}_{l} \right|^{2} + \frac{\beta}{2} \left| \boldsymbol{\psi}_{l} \right|^{4} \cdot \left(\boldsymbol{\psi}_{l+l} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+l}^{*} \boldsymbol{\psi}_{l} \right), \quad \boldsymbol{\psi}_{l} = \frac{1}{\sqrt{2}} \left(\boldsymbol{q}_{l} + \boldsymbol{i} \boldsymbol{p}_{l} \right) \\ \boldsymbol{H}_{D} &= \sum_{l} \left(\underbrace{\frac{\varepsilon_{l}}{2} \left(\boldsymbol{q}_{l}^{2} + \boldsymbol{p}_{l}^{2} \right) + \frac{\beta}{8} \left(\boldsymbol{q}_{l}^{2} + \boldsymbol{p}_{l}^{2} \right)^{2} \cdot \boldsymbol{q}_{n} \boldsymbol{q}_{n+1} - \boldsymbol{p}_{n} \boldsymbol{p}_{n+1} \right) \\ \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{\rho}_{l}^{\tau} &= \boldsymbol{q}_{l} \cos(\alpha_{l}\tau) + \boldsymbol{p}_{l} \sin(\alpha_{l}\tau), \\ \boldsymbol{p}_{l}^{\tau} &= \boldsymbol{p}_{l} \cos(\alpha_{l}\tau) - \boldsymbol{q}_{l} \sin(\alpha_{l}\tau), \quad \boldsymbol{e}^{\tau L_{\mathcal{B}}} : (\mathbf{q}^{\prime}, \mathbf{p}^{\prime})^{\mathrm{T}} = \mathbf{C}(\tau) \cdot (\mathbf{q}, \mathbf{p})^{\mathrm{T}} \\ \boldsymbol{\alpha}_{l} &= \epsilon_{l} + \beta(\boldsymbol{q}_{l}^{2} + \boldsymbol{p}_{l}^{2})/2 \end{split}$$

Evaluation of the C(\tau) matrix

The equations of motion for the Hamiltonian B can be written as:

$$\dot{\mathbf{x}}^{\mathrm{T}} = \begin{pmatrix} \mathbf{0} & \mathbf{A} \\ -\mathbf{A} & \mathbf{0} \end{pmatrix} \mathbf{x}^{\mathrm{T}} \quad \text{with} \quad \mathbf{A} = \begin{pmatrix} 0 & -1 & 0 & \cdots & 0 & 0 \\ -1 & 0 & -1 & \cdots & 0 & 0 \\ 0 & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -1 \\ 0 & 0 & 0 & \cdots & -1 & 0 \end{pmatrix}$$

Then the matrix $C(\tau)$ is given by $C(\tau) = \begin{pmatrix} \cos(A\tau) & \sin(A\tau) \\ -\sin(A\tau) & \cos(A\tau) \end{pmatrix}$

$$\cos(\mathbf{A}\tau) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \mathbf{A}^{2k} \tau^{2k}, \quad \sin(\mathbf{A}\tau) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \mathbf{A}^{2k+1} \tau^{2k+1}.$$

The evaluation of the elements of matrices $cos(A\tau)$ and $sin(A\tau)$ can be obtained through the determination of the eigenvalues and eigenvectors of matrix A itself (Gerlach, Meichsner, Ch.S., 2016, Eur. Phys. J. Sp. Top).

DNLS model: 2 part split SIs

Order 2: Leap-frog (3 steps) $LF(\tau) = e^{\frac{\tau}{2}L_{\mathcal{A}}}e^{\tau L_{\mathcal{B}}}e^{\frac{\tau}{2}L_{\mathcal{A}}}$ **SABA₂ (5 steps)**

Order 4: Yoshida, 1990, Phys. Lett. A (7 steps)

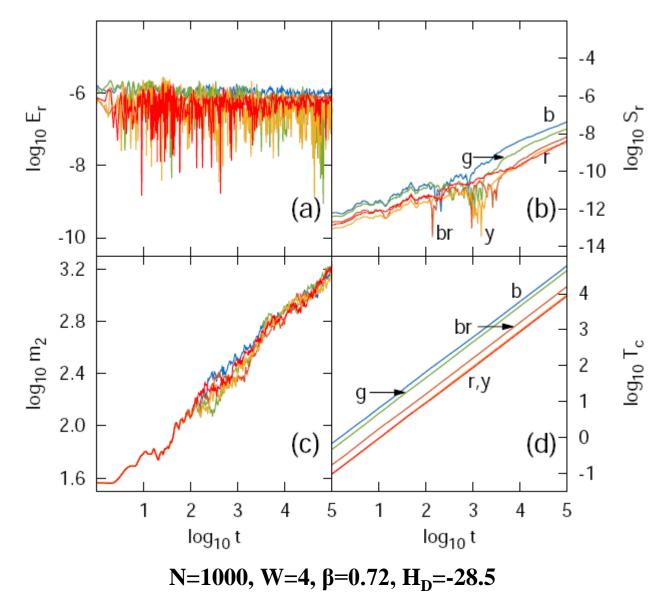
 $S^{4}(\tau) = e^{c_{1}\tau L_{\mathcal{A}}} e^{d_{1}\tau L_{\mathcal{B}}} e^{c_{2}\tau L_{\mathcal{A}}} e^{d_{2}\tau L_{\mathcal{B}}} e^{c_{2}\tau L_{\mathcal{A}}} e^{d_{1}\tau L_{\mathcal{B}}} e^{c_{1}\tau L_{\mathcal{A}}},$ with $c_{1} = \frac{1}{2(2-2^{1/3})}, c_{2} = \frac{1-2^{1/3}}{2(2-2^{1/3})}, d_{1} = \frac{1}{2-2^{1/3}}, d_{2} = -\frac{2^{1/3}}{2-2^{1/3}},$ **ABA864 [Blanes et al., 2013, App. Num. Math.] (15 steps)**

Order 6: Using the composition method refereed as 'solution A' in [Yoshida, 1990, Phys. Lett. A] we construct the 6th order symplectic integrator S⁶ having 29 steps

 $S^{6}(\tau) = S^{2}(w_{3}\tau)S^{2}(w_{2}\tau)S^{2}(w_{1}\tau)S^{2}(w_{0}\tau)S^{2}(w_{1}\tau)S^{2}(w_{2}\tau)S^{2}(w_{3}\tau)$

where S^2 is the SABA₂ integrator, while the values of w_0 , w_1 , w_2 , w_3 can be found in [Yoshida, 1990, Phys. Lett. A]

2 part split SIs: Numerical results



LF τ =0.0025 SABA₂ τ =0.01 S⁴ τ =0.05 ABA864 τ =0.175 S⁶ τ =0.25

E_r: relative energy error S_r: relative norm error T_c: CPU time (sec)

Gerlach, Meichsner, Ch.S., 2016, Eur. Phys. J. Sp. Top.

DNLS model: 3 part split SIs

Symplectic Integrators produced by Successive Splits (SS)

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n}p_{n+1} \right)$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + q_{l}^{2}) + \frac{\varepsilon_{l}}{2} (q_{l}^{2} + q_{$$

Using the SABA₂ integrator we get a 2^{nd} order integrator with 13 steps, SS²: $[(3-\sqrt{3})]$

$$\tau' = \tau / 2 \quad e^{\left[\frac{(3-\sqrt{3})}{6}\tau'\right]L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\frac{\sqrt{3}\tau'}{3}L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\left[\frac{(3-\sqrt{3})}{6}\tau'\right]L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\left[\frac{(3-\sqrt{3})}{6}\tau'\right]L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\frac{\sqrt{3}\tau'}{3}L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\left[\frac{(3-\sqrt{3})}{6}\tau'\right]L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\frac{\sqrt{3}\tau'}{3}L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\frac{(3-\sqrt{3})}{6}\tau'} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\frac{\sqrt{3}\tau'}{3}L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\frac{\sqrt{3}\tau'}{6}\tau'} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\frac{\tau'}{2}L_{B$$

DNLS model: 3 part split SIs

Three part split symplectic integrator of order 2, with 5 steps: ABC² $H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$ $A \qquad B \qquad C$ $A \qquad B \qquad C^{2} = e^{\frac{\tau}{2}L_{A}} e^{\frac{\tau}{2}L_{B}} e^{\tau L_{C}} e^{\frac{\tau}{2}L_{B}} e^{\frac{\tau}{2}L_{A}}$

This low order integrator has already been used by e.g. Chambers, MNRAS (1999) – Goździewski et al., MNRAS (2008).

DNLS model: 3 part split SIs

Order 4: Starting from any 2nd order symplectic integrator S^{2nd}, we can construct a 4th order integrator S^{4th} using the composition method proposed by Yoshida [Phys. Lett. A (1990)]:

 $S^{4th}(\tau) = S^{2nd}(x_1\tau) \times S^{2nd}(x_0\tau) \times S^{2nd}(x_1\tau), \quad x_0 = -\frac{2^{1/3}}{2 \cdot 2^{1/3}}, \quad x_1 = \frac{1}{2 \cdot 2^{1/3}}$

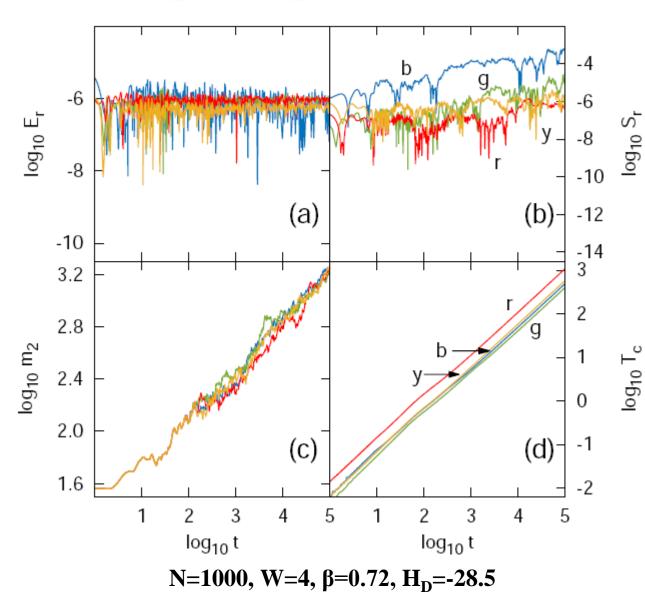
In this way, starting with the 2nd order integrators SS² and ABC² we construct the 4th order integrators:

SS⁴ with 37 steps **ABC**⁴_[Y] with 13 steps

Using the ABAH864 integrator [Blanes et al., 2013, App. Num. Math.], where the B part is integrated by the SABA₂ scheme, we construct the 4th order integrator: SS^4_{864} integrator with 49 steps.

Order 6: Using the composition method proposed in [Sofroniou & Spaletta, 2005, Optim. Methods Softw.] we construct the 6th order symplectic integrator ABC⁶_[SS] with 45 steps.

3 part split SIs: Numerical results

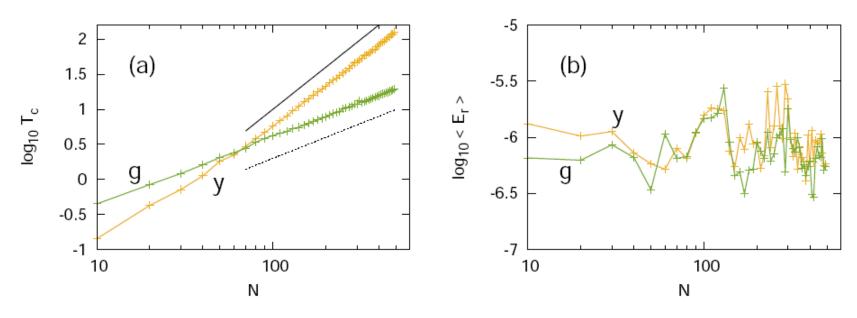


 $ABC_{[Y]}^{4} \tau=0.05$ $SS^{4} \tau=0.05$ $SS_{864}^{4} \tau=0.125$ <u>ABC_{[SS]}^{6} \tau=0.225</u>

E_r: relative energy error S_r: relative norm error T_c: CPU time (sec)

Gerlach, Meichsner, Ch.S., 2016, Eur. Phys. J. Sp. Top.

2 and 3 part split SIs: Comparing their efficiency



Best 2 part split: ABA864 τ =0.125 Best 3 part split: ABC⁶_[SS] τ =0.225

N = number of sites, $t = 10^4$ E_r: relative energy error, T_c: CPU time (sec)

Summary

- We presented several efficient symplectic integration methods suitable for the integration of the DNLS model, which are based on <u>2 and 3 part split</u> of the Hamiltonian.
 - ✓ 2 part split methods preserve better the second integral of the system (i.e. the norm)
 - ✓ For small lattices (N \leq 70) 2 part split methods are computationally more efficient, while for larger lattice 3 part split method should be used.

References

- •Ch.S., Gerlach (2010) PRE, 82, 036704
- •Gerlach, Ch.S. (2011) Discr.Cont. Dyn. Sys.-Supp. 2011, 475
- •Gerlach, Eggl, Ch.S. (2012) Int. J. Bifurc. Chaos, 22, 1250216
- •Ch.S., Gerlach, Bodyfelt, Papamikos, Eggl (2014) Phys. Lett. A, 378, 1809
- •Gerlach, Meichsner, Ch.S. (2016) Eur. Phys. J. Sp. Top., 225, 1103

A...shameless promotion

Contents

- **1. Parlitz:** Estimating Lyapunov Exponents from Time Series
- 2. Lega, Guzzo, Froeschlé: Theory and Applications of the Fast Lyapunov Indicator (FLI) Method
- **3. Barrio:** Theory and Applications of the Orthogonal Fast Lyapunov Indicator (OFLI and OFLI2) Methods
- 4. Cincotta, Giordano: Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
- **5. Ch.S., Manos: The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection**
- 6. Sándor, Maffione: The Relative Lyapunov Indicators: Theory and Application to Dynamical Astronomy
- 7. Gottwald, Melbourne: The 0-1 Test for Chaos: A Review
- 8. Siegert, Kantz: Prediction of Complex Dynamics: Who Cares About Chaos?

Lecture Notes in Physics 915

Charalampos (Haris) Skokos Georg A. Gottwald Jacques Laskar *Editors*

Chaos Detection and Predictability

🖄 Springer

2016, Lect. Notes Phys., 915, Springer